AN INTRODUCTION TO BEST EMPIRICAL MODELS WHEN THE PARAMETER SPACE IS INFINITE DIMENSIONAL BY WERNER PLOBERGER and PETER
نویسندگان
چکیده
Ploberger and Phillips (Econometrica, Vol. 71, pp. 627–673, 2003) proved a result that provides a bound on how close a fitted empirical model can get to the true model when the model is represented by a parameterized probability measure on a finite dimensional parameter space. The present note extends that result to cases where the parameter space is infinite dimensional. The results have implications for model choice in infinite dimensional problems and highlight some of the difficulties, including technical difficulties, presented by models of infinite dimension. Some implications for forecasting are considered and some applications are given, including the empirically relevant case of vector autoregression (VAR) models of infinite order.
منابع مشابه
An Introduction to Best Empirical Models when the Parameter Space is Infinite Dimensional∗
Ploberger and Phillips (2003) proved a result that provides a bound on how close a fitted empirical model can get to the true model when the model is represented by a parameterized probability measure on a finite dimensional parameter space. The present note extends that result to cases where the parameter space is infinite dimensional. The results have implications for model choice in infinite...
متن کاملEmpirical Limits for Time Series Econometric Models
This paper seeks to characterize empirically achievable limits for time series econometric modeling. The approach involves the concept of minimal information loss in time series regression and the paper shows how to derive bounds that delimit the proximity of empirical measures to the true probability measure in models that are of econometric interest. The approach utilizes generally valid asym...
متن کاملNonexpansive mappings on complex C*-algebras and their fixed points
A normed space $mathfrak{X}$ is said to have the fixed point property, if for each nonexpansive mapping $T : E longrightarrow E $ on a nonempty bounded closed convex subset $ E $ of $ mathfrak{X} $ has a fixed point. In this paper, we first show that if $ X $ is a locally compact Hausdorff space then the following are equivalent: (i) $X$ is infinite set, (ii) $C_0(X)$ is infinite dimensional, (...
متن کاملStudy of Solute Dispersion with Source/Sink Impact in Semi-Infinite Porous Medium
Mathematical models for pollutant transport in semi-infinite aquifers are based on the advection-dispersion equation (ADE) and its variants. This study employs the ADE incorporating time-dependent dispersion and velocity and space-time dependent source and sink, expressed by one function. The dispersion theory allows mechanical dispersion to be directly proportional to seepage velocity. Initial...
متن کاملMagnetohydrodynamics Fluid Flow and Heat Transfer over a Permeable Shrinking Sheet with Joule dissipation: Analytical Approach
A laminar, two dimensional, steady boundary layer Newtonian conducting fluid flow passes over a permeable shrinking sheet in the presence of a uniform magnetic field is investigated. The governing equations have converted to ordinary nonlinear differential equations (ODE) by using appropriate similarity transformations. The main idea is to transform ODE with infinite boundary condition into oth...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002